Lecture: 5-5 The Substitution Rule (Part 3)

Example 1: Doing (some) substitutions quickly. In later Calculus courses (Calculus 2 especially) it is quite useful to be able to do some very simple substitutions without having to go through writing out u and $d u$. Do the following integrals using substitution and then see if you can see the pattern well enough to not need to do all of the work.
(a) $\int e^{5 x} d x$
(b) $\int \sin \left(\frac{\pi}{2} x\right) d x$
(c) $\int \sqrt{1-2 x} d x$

Example 2: Integrate the following functions. Check your answers using a derivative.
(a) $\int \sec ^{2}\left(\frac{\pi}{4} \theta\right) d \theta$
(b) $\int \sec (2 x) \tan (2 x) d x$
(c) $\int \sqrt{1+4 x} d x$

Example 3: Evaluate the following indefinite integrals.
(a) $\int \tan ^{2} x \sec ^{2} x d x$
(b) $\int t^{2} \cos \left(1-t^{3}\right) d t$

Example 4: Evaluate $\int x^{3}\left(1-x^{2}\right)^{3 / 2} d x$

Example 5: Evaluate the following definite integrals.
(a) $\int_{0}^{1} \cos (\pi t) d t$
(b) $\int_{0}^{\pi / 4} \sin (4 x) d x$

Example 6: Evaluate $\int_{1}^{4} \frac{1}{x^{2}} \sqrt{1+\frac{1}{x}} d x$. In doing so, change the bounds.

Example 7: Evaluate the following integrals.
(a) $\int \frac{x}{x^{2}+4} d x$
(b) $\int \frac{x}{\sqrt{25-x^{2}}} d x$

Example 8: Evaluate the following integrals.
(a) $\int x e^{-x^{2}} d x$
(b) $\int_{1}^{e} \frac{(\ln x)^{3}}{x} d x$

Example 9: Evaluate $\int_{-3}^{3}(x+5) \sqrt{9-x^{2}}$.

Example 10: A model for the basal metabolic rate, in $\mathrm{kcal} / \mathrm{h}$, of a young man is $R(t)=85-0.2 \cos (\pi t / 12)$, where t is the time in hours measured from 5:00 AM. What is the total basal metabolic rate of this man over a 24 hour time period?

